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The question is addressed of how much energy is reflected when a Kelvin wave 
propagating along a straight channel hits a bend. The solution is expressed as a 
truncated series of Kelvin waves and several evanescent cross-channel Poincar6 
modes. The bend acts as a diffraction grating - for bends of certain angles there is 
complete transmission and between these angles there are lobes of reflection. The 
width of the lobes of the diffraction pattern is directly proportional to the wavelength 
of the incident Kelvin wave, as in optics, electromagnetism, etc. The effect of 
changing the inside radius of the bend is also examined. The reflection of energy is 
generally small unless the Poincar6 modes are nearly propagating. 

1. Introduction 
The problem of the reflection of a Kelvin wave from the end of a channel was first 

solved by Taylor (1920). He found that it was not possible for a pair of Kelvin waves 
propagating in opposite directions to satisfy the condition of zero flow normal to the 
endwall, and that a whole spectrum of Poincar6 waves had to be involved in the 
reflection process. The problem was re-examined by Hendershott & Speranza (1971) 
and Brown (1973). 

In this paper Taylor’s method is used to investigate the behaviour of Kelvin wave 
incident upon a bend in a channel. This investigation was motivated by the question 
of how much of the internal tide in Knight Inlet, British Colombia is reflected by 
a right-angled bend half-way along. The internal tide is generated at a shallow sill, 
seaward of the bend, and propagates up-inlet until it hits the bend, where it is either 
reflected or transmitted and dissipated through turbulence. In an analysis of 
current-meter records, Freeland (1984) concluded that most of the internal tide is 
reflected by the bend. On the other hand, Blackford (1984), in a study of the waveform 
of the internal tide, deduced the opposite result. This study seeks to resolve the 
conflict between these two conclusions. 

However, the results of this study are equally applicable to much wider channels, 
or to barotropic Kelvin waves; these factors are combined into a single parameter 
k, which is proportional to the ratio of the channel width to the incident wavelength. 

Previous models of Kelvin waves propagating around bends have not included an 
opposite wall; they have been bends in straight coastlines. Buchwald (1968) 
considered a right-angled bend, and Packham & Williams (1968) solved the problem 
for a bend of general angle. Because there was no opposite wall, a reflected Kelvin 
wave was not possible, and any energy not transmitted as a Kelvin wave had to be 
radiated as cylindrical Poincar6 waves from the corner. They found that there was 
complete transmission in the case of sub-inertial-frequency Kelvin waves, since the 
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Poincarc! waves are evanescent. In the case of super-inertial-frequency Kelvin waves, 
Packham & Williams found that there was complete transmission only for wedge 
angles x/(2n+ l),  where n = 1,2,3,  . . . (see figure 10). 

In  this paper, then, solutions ofthe linearizedlong-waveequationsinaflet-bottomed 
channel of rectangular cross-section are presented for the case of a Kelvin wave 
incident upon a bend. In  $2 the governing equation and boundary conditions for the 
problem are presented, and in $3 the equations are non-dimensionalized and some 
special solutions (Kelvin and Poincarc! waves) in a straight channel are given. Section 
4 describes the method of solution in a bend in a channel, followed in 55 by a 
discussion of the eigenvalues for the problem in a sector of an annulus. The main 
results are presented in $6. 

2. Governing equations 
The linearized long-wave equations, for a harmonic time dependence eiwt, separated 

into vertical and horizontal dependences, are (LeBlond & Mysak 1978, equations 
10.34-10.38) : 

iotr-fP = - P,, 

ioP+fB = -pY, 

gh,( Dz + PY) = - iwP. 

(0, P) and P are the ,,orizontal dependences of velocity anG pressure respectively, 
and h, is the equivalent depth as derived from a vertical modes calculation. In  the 
case of the barotropic tide, h, is the depth of the channel. 

Equations (1)  and (2) can be solved for and P in terms of P: 

where 7 =flu. (6) 

(VZ+P)  P = 0, (7) 

where E2 (W2-p)/gh,.  (8) 

The equation of continuity (3) then yields the wave equation in P: 

At a boundary, the requirement that there be no normal velocity is expressed by 
the condition : (2 17- a”,) P = 0, (9) 

where n denotes the Gutward normal to the boundary, and s the direction along the 
boundary. 
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FIQURE 1. Schematic diagram of the annular bend, showing the geometry of the problem. The 
coordinate system used in describing solutions in a straight channel is shown in region 1. 

3. Special solutions in a straight channel 
The channel width is taken to be 2L, and the lengthscale L is used to non- 

dimensionalize the space coordinates. The coordinate system shown in figure 1 is 
adopted, where the channel width is 2 units. 

The problem then becomes 

(V2+k2)  P = 0, (10) 

with 

where 

17- P = O  a t x = 0 , 2 ,  (2 
Note that k2 is a non-dimensional parameter. 

The solution for a Kelvin wave propagating in the direction of increasing y is 

(1 - 7 2 ) :  

where U ,  V are proportional to the velocities 0, P. 
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The corresponding expressions for the mth cross-channel Poincak mode are 

irk, 
cost,x--sint,x 

t?n 

7’kL-tk u = e+mU( t ,  ) sin t, x, 

V =  e-kmu 

f o r m =  1 ,2 ,3 ,  . . . ,  

where t, = *X’ (19) 

and k, = + (tL - k2)t. (20) 

In this paper i t  is assumed that all the Poincar6 modes are evanescent, i.e. 
kZ < = 2.4674, and that the frequencies are super-inertial, i.e. r = ( f / w )  < 1 .  
Equations (12) and (20) show that all sub-inertial-frequency Poincar6 waves (e.g. 
diurnal tides) are evanescent, whereas super-inertial-frequency Poincar6 waves (e.g. 
semi-diurnal tides) will only propagate if the channel is wide enough or the phase speed 
(gh,)a is small enough. Kelvin waves propagate at  all frequencies. 

The corresponding expressions for Kelvin waves propagating in the opposite 
direction can be obtained by replacing k by - k  in (13)-(15), or for Poincar6 waves 
decaying in the opposite direction by replacing k, by - k, in (16)-(18). 

For reference, expressions for the non-dimensional wavelength of the incident 
Kelvin wave A ,  and the non-dimensional Rossby radius R,, are 

The appropriate lengthscale to convert these to dimensional quantities is L, the 
half-width of the channel. 

4. Method of solution 
The domain of interest is a bend in a channel, as shown in figure 1. The domain 

is split into three regions - two straight channels (regions 1 and 3) and a sector of 
an annulus of variable angle (region 2).  The two free parameters that describe the 
geometry of the bend are the bend angle 4 and the inside radius of the bend r,. 

The solutions in regions 1 and 3 are expressed as a sum of a Kelvin wave 
propagating away from the boundary with region 2, and a truncated infinite series 
of evanescent Poincar6 modes, which decay away from the same boundary. These 
waves all have unknown complex coefficients that must be determined. In addition, 
the solution in region 1 has a further component, namely an incident Kelvin wave 
of unit amplitude and zero phase. 

The solution in region 2 is expressed as a superposition of ‘radial’ Kelvin waves 
and Poincar6 modes. If the solution P(r, 8) is separated into 

~ ( r ,  8) = R ( ~ )  o(e) (23) 



Propagation of a Kelvin wave around a bend in a channel 26 1 

then the wave equation becomes 

and R " + A R ' + ( g + k 2 ) R  T = 0,  

where v2 is the separation constant. The solution to the &problem is 

(26) 8 = eiv8 

The boundary conditions of zero normal flow at the inner and outer radii of the 
annulus become 

U, = R'+-R = 0 at r = ro, ro+2.  

Equations (25) and (27) form an eigenvalue problem, whose eigen-functions form a 
complete set. The corresponding expression for the velocity component parallel to 

(28) 
the channel is 

V =-R+iTR. 

Equation (25) is Bessel's equation of order v. For 'radial' Kelvin waves, the 
eigenvalue v is real, and the solution could be expressed in terms of Bessel functions 
of order v. However, for evanescent 'radial' Poincak modes, v is nearly imaginary 
(it is a complex number whose phase is close to 90" or 270'; see discussion in $5) .  
The eigenvalue problem was solved numerically, since this method is easier than 
evaluating Bessel functions of complex order. A fourth-order Runge-Kutta scheme 
was used with iterative refinement of the eigenvalue to satisfy the boundary condition 
at the end point of the integration (a 'shooting' technique). 

The solution in the annulus was expressed as a superposition of two 'radial ' Kelvin 
waves propagating in opposite directions around the annulus, and the two 
corresponding truncated sets of Poincar6 modes, decaying in opposite directions. 

Hence, if the Poinear6 modes are truncated after M terms, then 4 ( M +  1) complex 
coefficients are required to describe the solution everywhere. All the basis functions 
satisfy the wave equation, and they satisfy the boundary condition of zero normal 
velocity along the coastline. However, the matching of pressure and velocity along 
the common boundaries between regions 1 and 2 and between 2 and 3 remain to be 
imposed. 

In fact, it is only necessary for the pressure and normal velocity to be matched 
across these boundaries, since if these two properties match then all other properties, 
including tangential velocity, must also match. Suppose that the pressure matches 
on either side of a boundary. Then the tangential component of the pressure gradient 
aP/as must match. Yet if the normal velocity (aP/an-iraP/as) matches then aP/an 
also matches. Hence V P  matches, and so therefore does the tangential velocity 
(aP/as+iTaP/an). We also have (V2+ k2)  P = 0 on both sides of the boundary, which 
implies that (V2 + k2)  V P  = 0,  (V2 + k2)  V 2 P  = 0, etc. Given that P and V P  match, it 
follows by induction that V2P, Q3P, V4P, etc., also match. 

The matching process was split into two stages, which reduced the problem from 
the inversion of a complex matrix of order 4(M+ 1) to the inversion of two matrices 
of order 2(M+ 1). 

(27) 
7 V  

r 

iv 
' - r  
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4.1. First stage 

The f i s t  stage is the matching of normal velocity. The problem of a basin of the form 
of a sector of an annulus with zero normal velocity along one straight edge and a 
prescribed normal velocity along the other is considered. 

The solution inside the annulus can be expressed as a sum of two ‘radial’ Kelvin 
waves propagating in opposite directions, and their two associated sets of M ‘radial’ 
Poincark modes, decaying in opposite directions. The solution requires 2 ( M +  1)  
complex coefficients to be determined. The boundary conditions of zero normal 
velocity along one straight edge and prescribed normal velocity along the other must 
be forced by a suitable choice of coefficients. 

The coefficients were calculsted using a least-squares method, minimizing the sum 
of squares of the moduli of the differences between the normal velocities corresponding 
to the fitted superposition of basis functions and the required normal velocity. The 
sum of squares was calculated by dividing each boundary into N -  1 intervals, and 
then evaluating the basis functions and required normal velocities at N points 
distributed evenly along each of the two boundaries. The value of N was chosen to 
be sufficiently large ( 2 2 M )  that aliasing of the Poincar6 modes did not occur. Hence 
the 2 ( M +  1)  unknowns were calculated by a least sum of squares at  2N locations. 

The first stage, then, consists of applying this procedure 2 M + 3  times with the 
following prescribed normal velocities to region 2 : 

(a) the normal velocity corresponding to an incident Kelvin wave in region 1 ; 
(b )  the normal velocity corresponding to a reflected Kelvin wave in region 1 ; 
( c )  the normal velocity corresponding to each of M evanescent Poincar6 modes in 

( d )  the normal velocity corresponding to a transmitted Kelvin wave in region 3; 
( e )  the normal velocity corresponding to each of M evanescent Poincar6 modes in 

At this stage the amplitude and phase of all these applied waves were arbitrarily 
set to unity and zero. Their actual magnitude and phase are determined in the second 
stage. 

region 1 ; 

region 3.  

4.2.  Second stage 

The second stage is the matching of pressure. For each of the 2 M +  3 types of wave 
in the straight channels, the first stage of the calculation returns the pressure field 
inside region 2 such that the normal velocity matches. For each of these waves, the 
difference between the pressure in region 2 and that in regions 1 and 3 is calculated 
along their two common boundaries. If the wave exists in region 1, then the pressure 
in region 3 is taken to be zero, and vice versa. 

The aim of the second stage is to h d  a combination of the 2 M +  3 types of wave 
in the straight channels that makes the sum of these ‘pressure anomalies’ vanish. 
The amplitude and phase of the incident Kelvin wave are arbitrarily set to unity and 
zero, leaving 2 ( M +  1) complex coefficients to be calculated. They are also evaluated 
by a least-sum-of-squares method - minimizing the sum of squares of the moduli of 
the ‘pressure anomalies’ at 2N locations. 

The first stage of the calculation describes how a sector of annulus responds to 
various forcing terms, and the second stage describes how the annulus and the two 
straight channels are connected. This method is an adaptation of the collocation 
method. However, in the collocation method boundary conditions are applied at the 
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same number of points as there are unknown coefficients. In  this method a t  least twice 
as many points are used, and the boundary conditions are applied in a least-squares 
sense. 

5. Discussion of the results of the eigenvalue problem in the annulus 
The eigenvalues {Y~} for the radial Kelvin and Poincar6 modes were found to be 

of the same order of magnitude as those in a straight channel of the same width. A 
value must be assigned to the radius when converting from polar coordinates to 
Cartesian coordinates; this value was taken to be the average radius of the annulus 
(ro+ 1). As the radius of the annulus tended to infinity, the eigenvalues ut tended to 
the eigenvalues in a straight channel, as expected. 

The eigenvalues for Kelvin waves in a straight channel are real, and for evanescent 
Poincar6 modes are imaginary. In both cases, the eigenvalues corresponding to waves 
propagating (or decaying) in the opposite direction are the negative of the original 
eigenvalues. 

However, in a bend, when there is rotation, a ‘splitting’ occurs. As f is increased 
from zero, or as r,, is decreased from infinity, the eigenvalue for a Kelvin wave 
propagating around a bend to the left increases slowly above its original value. The 
eigenvalue for a Kelvin wave propagating around a bend to the right decreases slowly 
below its original value. For sharp bends (To = 0.1 say), this difference between the 
eigenvalues for bends of opposite senses is large. This effect can be explained in terms 
of the difference in path lengths for a Kelvin wave bound tightly to the right-hand 
side of the channel. Such a wave propagating around a bend to the right will have 
a larger angular velocity than a wave propagating around a bend to the left for a 
given linear phase speed because of the shorter path length. Hence its angular 
wavenumber will be smaller. 

The eigenvalues for Kelvin waves do, however, remain real. The cross-channel 
pressure distribution also stays real, and the along-channel velocity component is still 
imaginary. However, a small, real cross-channel velocity component is introduced. 
This quantity is small at first, but increases as ro decreases. 

The eigenvalues for the evanescent Poincad modes are no longer imaginary, but 
a small real part is introduced as the sharpness of the bend is increased. It can be 
shown that the eigenvalue for a Poincar6 mode decaying clockwise around a bend 
is the complex-conjugate of the eigenvalue for one decaying anticlockwise around a 
bend. This small real part to the eigenvalues is equivalent to a long-wavelength 
oscillation which is quickly damped out by the presence of the imaginary part. The 
real part always has a sign such that the oscillation propagates around the bend in 
an anticyclonic direction (clockwise in the northern hemisphere). 

6. Main results 
The following results were obtained using 10 Poincad modes (M = lo), and doing 

a least-squares fit at 20 points along each boundary (N = 20). The success of each run 
was judged by the extent to which the pressure and velocity fields were continuous 
across the boundaries, and the extent to which the sum of the transmitted and 
reflected energy fluxes equalled the incident flux. 

The continuity of velocity can be evaluated by looking at the plot of current 
ellipses - for points on the common boundary between two regions two ellipses are 
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FIGURE 2. (a) Reflection coefficient against k2: T = 0.803,, r,, = 0.5, q5 =go". Solid line is R yo, dashed 
line is 100-T%. The first Poincar6 mode propagates when k2 > 2.4674. (6) Blowup of (a) for small 
k2. The straight line is R % = 5.34 kz, which is the least-squares best fit for k2 c 0.025. 

plotted according to the solution in each region. The two ellipses should be 
indistinguishable. Note that the current ellipses in all the figures are scaled by an 
arbitrary factor to make the ellipses large enough to  be seen clearly without excessive 
overlapping. 

The relative energy fluxes were calculated by simply squaring the absolute value 
of the coefficient of the relevant wave in the solution, be it the incident, reflected or 
transmitted wave. The reflected (R yo) and transmitted (T%) fluxes were expressed 
as a percentage of the incident flux. There should be no energy loss, since there is 
no dissipation in the model. The Poinear6 modes transmit no energy, since they are 
evanescent. 

There are four free parameters in the problem, namely 7 ,  the period of the 
oscillation, k, which is proportional to  the ratio of the channel width to the Rossby 
radius (the Burger number), #, the bend angle, and ro, the inside radius. 

The approach used was to keep three of these parameters constant, and vary the 
fourth. The standard values used to start each parameter search were 7 = 0.803, 
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FIQURE 3. Solution fields for the case k2 = 7.02 x 7 = 0.803, r, = 0.5,# = 90'. Derived values: 
A = 44.7,R0 = 8.8, R% = 0.038%, 100-T% = 0.038%. (a)Pressurefield:solidlinesarecontours 
of magnitude; dashed lines are contours of phMe. (a) Velocity field: current ellipses are plotted. 
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FIQURE 4. Solution fields for the case k2 = 2.25, 7 = 0.803, r, = 0.5, 9 = 90'. Derived values: 
A = 2.5, R,, = 0.49, R% = 0.394%, 100-T% = 0.408%. (a) Pressure field. (a) Velocity field. 

k2 = 7.02 x $ = +90° (a right-angled bend to the left), ro = 0.5. These were 
chosen to represent the first mode of the M2 constituent of the internal tide in Knight 
Inlet. 

6.1. T = 0.803, $ = +90°, ro = 0.5, variable k2 
Figure 2 shows plots of the reflection coefficient R % against k2 for constant 7 ,  ro and 
$. R % is remarkably small ( < 1 %) until just before the cutoff wavenumber at which 
Poincark waves start to propagate, where there is a sharp rise. For small k2 ( < 0.05), 
R yo is roughly linear in k2, and the curve approaches the line R yo = 5.34k2 as k2 + 0 
(see blowup in figure 2b). 
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FIGURE 5. Reflection coefficient against 7 :  kZ = 7.02 x r, = 0.5, q5 = 90'. Triangles are R%, 
circles are 100 - T yo. Solid line is the curve R Yo = 1.89 k2/( 1 - r2) ,  which is the best fit to the points. 

The standard values for Knight Inlet lie well within the linear part of the 
relationship. Figure 3 shows the pressure and velocity fields for these values of the 
parameters. Note that because of the assumed eiWt time dependency waves propagate 
in the direction of decreasing phase (Arg P). Figure 4 shows the pressure and velocity 
fields for k2 = 2.25. This value lies in the rising portion of the curve of us. k2. 
Note the presence of amphidromes where the magnitude of the pressure oscillation 
is zero, and hence its phase is ambiguous. Derived values for the wavelength of the 
Kelvin wave A and the Rossby radius R, are included in the captions of figures 3 
and 4. 

In  all cases the current ellipses and pressure contours were observed to match very 
well, and no normal velocity component was observed at  the boundaries. Agreement 
between R% and 100- TYo was excellent. 

6.2. k2 = 7.02 x 4 = +goo, T,, = 0.5, variable 7 

Figure 5 shows the effect of varying 7 with a constant, small k2 in a right-angled bend. 
A 1/( 1 -72) dependency was observed. Combining this relationship with the linear 
relationship obtained for small k2 leads to the empirical relationship 

for small k2. (29) R% = 1.89- 

Using (21) one sees that R o/o is directly proportional to  the square of the ratio of the 
channel width to the wavelength of the incident Kelvin wave, for long waves. 

The case of sub-inertial-frequency waves 7 > 1 was also attempted. Unfortunately 
the method of solution broke down, in the sense that the velocity matching could 
not be achieved, and energy was not conserved. It is necessary to use negative values 
for k2 when 7 > 1, since f >  o (see (12)). The following possible causes of the 
breakdown were carefully investigated, without success : 

k2 
1 -T2 
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FIGURE 6. Reflection coefficient against bend angle q5 for various values of ka: T = 0.803, 
r, = 0.5. Solid lines are R%, dashed lines are 100-T%. 
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FIGURE 7. Solution fields for the case ka = 2.467, 7 = 0.803, r, = 0.5, q5 = 30'. Derived values: 
A = 2.4, R, = 0.47, R% = 35.93%, 100-T% = 36.00%. (a) Pressure field. (a) Velocity field. The 
curved line at the inside corner is a result of several short ellipses running into each other. 

ill-conditioning of the matrices; 
incorrect determination of the eigenfunctions in the annulus ; 
resonance in the sector of the annulus, caused by using a pair of (k2,  values 
that would allow free modes in a closed sector of an annulus (this would result 
in singular matrices) ; 
programming error. 
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FIGURE 8. Same as figure 7 except $ = -30" (i.e. a bend to the left). Derived values: 
R% = 35.88%, 100-T% = 36.42%. 

6.3. r = 0.803, ro = 0.5,  various k2, variable q5 
Figure 6 shows the effect of varying the bend angle q5. Two observations can be made : 
there are certain angles for which there is zero reflection ; and there is no significant 
difference in reflection coefficient for a bend of a given angle to  the left and a bend 
of the same angle to  the right (i.e. figure 6 is symmetrical about the R%-axis q5 = 0). 
Results for negative q5 are not actually plotted because they are the mirror image of 
results for positive q5. 

The effect of increasing k2 is to  compress the peaks laterally (i.e. make the zeros 
closer together), and t o  make them higher. The case k2 = 2.467 was also calculated, 
but was not included in figure 6 because it would have gone off scale. It can be seen 
in figure 9(c) on different axes. 

Examination of figure 6 reveals why there is a minimum in figure 2 (a) at around 
k2 = 0.75. The first angle of zero reflection decreases as k2 increases, and passes over 
the value q5 = 90" a t  this value of k2. 

Figures 7 and 8 illustrate the pressure and velocity fields for bends of 30' to the 
left and right respectively; they both have the same reflection coefficient (36 yo). The 
value used for k2 is 2.467, which is just below the cutoff value a t  which the first 
Poincar6 wave propagates. This value was chosen to  give a large R yo. In fact, the 
e-folding length for the decay of the Poincar6 mode is 50L (i.e. 25 times the channel 
width), and the solution is dominated by this mode. Its amplitude is an order of 
magnitude higher than that of the Kelvin waves. The dominance of the Poincar6 mode 
is the reason for the characteristic change in phase of the pressure in mid-channel 
by 180", and the maximum in velocities in mid-channel in figures 7 and 8 (see (16)-(18) 
with very small km). There is no along-channel phase propagation because the 
Poincar6 mode is evanescent. The Poincar6 mode does not contribute any energy flux, 
but i t  does dominate the solution near the bend, say within lOOL of the bend. 
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0 

FIGURE 9. Reflection coefficient against bend angle # for various values of 7. r,, = 0.5. Solid lines 
are R%, dashed lines are 100-T%. (a) kZ = 7.02 x (a) 0.2; (c) 2.467. 

The generation of a large-amplitude Poincad mode seems to be associated with 
the occurrence of high reflection coefficients for the Kelvin wave, and occurs when 
the Poincark mode has a large decay scale (almost propagating). Brown (1973) found 
a similar result in his study of the reflection of a Kelvin wave from the end of a channel 
(the Taylor problem). He allowed the first Poincar6 mode to propagate, so that any 
energy not reflected as a Kelvin wave was reflected as a Poincark wave. He found 
that just above the critical frequency at  which the first Poincad mode starts to 
propagate (i.e. k2 just above ( ! j~)~) ,  this mode becomes the principal energy- 
reflection mechanism. 

It therefore seems likely that soon after the first Poincar6 mode starts to 
propagate it will rapidly become a dominant energy radiation mechanism in the 
bend too, although in which direction is open to speculation. The amplitude of 
the Poincark mode has already been seen to become very large for k2 just less 
than although as long as the mode is evanescent it cannot contribute to the 
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FIGURE 10. (a) Diagram of the bend in a straight coastline studied by Packham & Williams (1968). 
(b )  100--T% against bend angle 9 for various values of T (after Packham & Williams lW8). 

energy-flux budget. However, as k2 increases above it is only necessary for 
the magnitude of that mode to remain large for the energy flux to increase 
rapidly, since the group velocity C, will increase rapidly anyway. Brown showed 
that if k2 = 

6.4. r,, = 0.5, various k2, various 7, variable 9 
(1 +6), then C, = O(61). 

Figure 9 shows plots of R% against bend angle 4 for various values of k2 and 7. 
For small k2 (figure 9a), larger values of 7 lead to larger values of R %for all angles. 

The system is in the 1/(1 -72) regime. However, for large k2 (figure 9c), larger values 
of 7 lead to smaller values of R %. For intermediate values of k2 (figure 9 b )  the curves 
seem to start off in the 1/(1 -72) regime for small angles (4 < 40" say), but move into 
the large-k2 regime for larger angles. 

Figure 9 (c) is in keeping with the results of Packham 6 Williams (1968). Their figure 
1 is redrawn in figure 10 on reversed axes to the conform with figure 9(c). Energy-flux 
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FIGURE 11. Angle of first zero reflection 4, against the incident wavelength A : r, = 0.5. Line is 
the best straight-line fit to the points. 

ratios were computed and plotted from their amplitude ratios. They investigated the 
propagation of a Kelvin wave around a wedge of variable angle. In their case no 
reflected Kelvin wave was possible. Energy that was not transmitted as an ongoing 
Kelvin wave was radiated as cylindrical Poincak waves (see figure 10). These 
Poincak waves could propagate because the frequency was super-inertial, and there 
was no channel. 

They also found angles a t  which there was complete transmission, and that larger 
values of 7 gave lower values for R %. Their problem gives no meaning to ka, since 
there is no natural lengthscale with which to non-dimensionalize the incident 
wavelength. However, large ka (as in figure 9c) in the bend in a channel would be 
expected to correspond most closely to their problem, since then the Poincar6 modes 
are almost propagating, and they do have propagating Poincak modes. 

Figure 11 shows a plot of the first angle of complete transmission, #,, against the 
incident wavelength A. The figure includes results from various values of ka and 7.  

A linear relationship was found. Thus the width of the ‘lobes’ in the R% vu8. # plots 
is directly proportional to the incident wavelength. This result is also found in 
diffraction theory in other fields. 

This relationship between the width of the lobes and the incident wavelength h 
is consistent with the linear relationship between R % and A-* for large A and fixed 
# found earlier. The relationship between 22% and # is almost quadratic for small 
# (i.e. R% a #a, see, for example, figure 9a) ,  so for a fixed 4, R% would be 
proportional to A-e ,  

6.5. 7 = 0.803, varioue ke ,  v a r i m  r,, variable # 
So far all the results for the annular bend have been for a fixed inside r d u s ,  r, = 0.5. 
Figure 12 shows the effect of varying this ‘sharpness’ for medium and large values 
of ka. In both cases, increasing the sharpness (decreasing r,) gives rise to higher 
reflection coefficients. Not only are the peak values of the lobes increased, but the 
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FIGURE 12. Reflection coefficient against bend angle 4 for various values of the inside radius r0: 
7 = 0.803. Solid lines are R%, dashed lines are 100--T%. (a)  k* = 0.2; ( b )  2.467. 

constant of proportionality between the width of the lobe $o and the incident 
wavelength is increased. 

For very sharp bends (r,, = 0.1) there is a significant discrepancy between R yo and 
100 - T % , and the velocities fail to match precisely. Also there are large velocities 
in the region of the inside bend, especially for small k2. These problems are exactly 
the same as were encountered when this method was applied to a so-called 
'rectangular bend '. This bend was right-angled with a rectangle comprising region 
2 instead of a sector of an annulus. Thus there was a discontinuity in the direction 
of the boundary by 90" at two points. Pneuli & Pekeris (1968) showed that near a 
corner of angular opening x/,u (,u < l ) ,  the solution is singular, giving rise to velocities 
which are O(@-l). Thus, at  the inside corner of the rectangular bend, where ,u = %, 
a singularity will occur. 

Hence i t  is not surprising that the method of expressing the solution as a harmonic 
basis functions failed in the rectangular bend, since such a series is incapable of 
representing the singularity. Nor is it  surprising that the method breaks down in the 
annular bend as r0+O, and that large velocities are observed near the inside corner. 

However, the rectangular bend gave qualitatively similar results to the annular 
bend in terms of reflection coefficients. The shape of figures 2 and 5 could be 
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FIQURE 13. Same a8 figure 7 except r, = 2.0. Derived values: R% = 0.733%, 
100-T% = 0.738%. 

reproduced, although the magnitudes of the reflection coefficients were much higher 
because of the increased sharpness. 

Figure 13 shows the solution in a bend of 30' with a large inside radius.The 
parameters are the same as in figure 7, except that the inside radius has been increased 
from 0.5 to 2.0, causing the reflection coefficient to drop from 36 to 0.7 %. The solution 
is no longer dominated by Poincar6 modes. It is quite remarkable that bends to the 
left and bends to the right of the same angle (e.g. figures 7 and 8) have similar solutions 
and identical reflection coefficients, whereas changing the inside radius and leaving 
the angle alone (e.g. figure 13) has a major impact upon the solution and reflection 
coefficient. 

7. Conclusions 
The bend acts as a 'diffraction grating'. For certain bend angles there is total 

transmission, and between these angles there are ' lobes ' ofhigh reflection. These lobes 
form a diffraction pattern that spreads out as the incident wavelength increases. The 
width of the lobes is proportional to the wavelength, as in other types of waves in 
optics, electromagnetism, etc. The constant of proportionality dewnds on the inside 
radius of the bend. 

It was found that bends to the left give rise to the same reflection coefficient as 
bends to the right of the same angle, irrespective of the degree to which the incident 
Kelvin wave is trapped against one wall (as measured by the Rossby radius). 

For bends of fixed angle the reflection coefficient for large wavelengths was found 
to be proportional to the square of the ratio of the channel width to the incident 
wavelength. The constant of proportionality increases as the inside radius of the bend 
decreases. 
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Just below the critical frequency at which Poincar6-mode propagation becomes 
possible, this mode starts to dominate the solution, although while this mode is still 
evanescent it cannot contribute to the energy-flux budget. This result is consistent 
with Brown's (1973) result just above the critical frequency in a closed channel. 

The method of solution breaks down for sub-inertial frequency waves, for unknown 
reasons. The method also breaks down as the inside radius of the bend tends to zero, 
because there is a singularity in the velocity field near corners whose angular opening 
is greater than 180°, as shown by Pneuli & Pekeris (1968). To correctly solve the 
problem in a geometry which has such a corner, the form of the solution must be 
capable of expressing a singularity. 

The reflection coefficient of the internal tide in Knight Inlet at a 90" bend was found 
to be very small, < 0.1 yo. Data from Knight Inlet are compatible with this result, 
in the sense that the vertical profiles of amplitude and phase of the M, constituent 
of velocity and density oscillations can be represented as a superposition of 
up-inlet-propagating vertical modes only, without having to include reflected modes. 
However, an accurate determination of the reflection coefficient for each vertical 
mode was not possible. The new data show that the internal tide in Knight Inlet 
cannot be represented by only one internal mode, as Freeland (1984) was forced to 
assume because he had current meters at only two depths. Further details are 
available in Webb (1985) and Webb & Pond (1986). Note that the results of this paper 
are equally applicable to a bend in any channel, and to barotropic tides. 
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